OPTIMAL SPATIAL SEARCHES WITH LONG-RANGE TUNNELING

Emma C. King^{1,*}, Moritz Linnebacher¹, Peter P. Orth¹, Matteo Rizzi², and Giovanna Morigi¹

¹Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany ²Institut fuer Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany *emma.king@physik.uni-saarland.de

ABSTRACT

A quantum walk on a lattice is a paradigm of a quantum search in a database. The database qubit strings are the lattice sites, qubit rotations are tunneling events, and the target site is tagged by an energy shift [1–3]. For continuous-time quantum walks, the walker diffuses across the lattice and the search ends when it localizes at the target site. The search time *T* can exhibit Grover's optimal scaling [4,5] with the lattice size *N*, namely, $T \sim \sqrt{N}$, on an all-connected, complete lattice. For finite-range tunneling between sites, instead, Grover's optimal scaling is warranted when the lattice is a hypercube, as illustrated in Fig. 1(a), of dimension d > 4 [3]. In this symposium, we will show that Grover's optimum can be reached in lower dimensions on lattices of long-range interacting particles, when the interaction strength scales algebraically with the distance *r* as $1/r^{\alpha}$ and $0 < \alpha < 3d/2$, see Fig. 1(b) [6]. For $\alpha < d$ the dynamics mimics the one of a globally connected graph. For $d < \alpha < d + 2$, the quantum search on the graph can be mapped to a short-range model on a hypercube with spatial dimension $d_s = 2d/(\alpha - d)$, indicating that the search is optimal for $d_s > 4$. The critical spectral dimension $d_s = 4$ corresponds to exponent $\alpha = \alpha_c = 3d/2$, which is associated with a phase transition in the time complexity of the search problem. The corresponding order parameter χ_{α} , with its squared value being the fidelity, is shown in Fig. 2. Our work [6] hereby identifies an exact relation between criticality of long-range and short-range systems, it provides a quantitative demonstration of the resources that long-range interactions provide for quantum technologies, and indicates when existing experimental platforms can implement efficient analog quantum search algorithms.

Figure 1: (a) Illustrative graphic of search on a cubic lattice (hypercube with d = 3) with nearest-neighbor couplings ($\alpha \rightarrow \infty$). Target node for which we search is depicted in red. (b) Schematic of the power-law scaling of the connectivity of a single site \vec{i} in a two-dimensional cubic lattice.

Figure 2: Upper bound to the search fidelity: χ_{α} as a function of the number of lattice sites N and long-range tunneling exponent α for (a) d = 1, (b) d = 2, and (c) d = 3. Vertical lines correspond to $\alpha = d$ (solid) and $\alpha = \alpha_c = 3d/2$ (dashed). (d) Asymptotic behavior of χ_{α} in the limit $N \to \infty$ as a function of α/d . For $0 < \alpha < d$, $\chi_{\alpha} = 1$, while for $d < \alpha < 3d/2$ it decreases monotonically to zero as $\chi_{\alpha} = \sqrt{3-2\alpha/d}/(2-\alpha/d)$.

REFERENCES

- [1] E. Farhi and S. Gutmann, Analog analogue of a digital quantum computation, Phys. Rev. A, vol. 57, pp. 2403, 1998.
- [2] S. Aaronson and A. Ambainis, in Proceedings of the 44th Annu. IEEE Symp. Found. Comput. Sci. (Cambridge, MA, USA, October 11–14, 2003), eds. Frances Titsworth, pp. 200–209 (2003).
- [3] A. M. Childs and J. Goldstone, Spatial search by quantum walk, Phys. Rev. A, vol. 70, pp. 022314, 2004.
- [4] L. K. Grover, in Proceedings of the Twenty-Eighth Annu. ACM Symp. Theory Com- put. STOC 96 (Philadelphia, Pennsylvania, United States, May 22–24, 1996), eds. Gary L. Miller, pp. 212–219 (1996).
- [5] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack, Phys. Rev. Lett., vol. 79, pp. 325, 1997.
- [6] E. C. King, M. Linnebacher, P. P. Orth, M. Rizzi, and G. Morigi, Optimal spatial searches with long-range tunneling, arXiv, 2501.08148, 2025.